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ABSTRACT
People with visual impairments face challenges in scene and object
recognition, especially in unknown environments. We combined
themobile scene detection framework Apple ARKit withMobileNet-
v2 and 3D spatial audio to provide an auditory scene description
to people with visual impairments. The combination of ARKit and
MobileNet allows keeping recognized objects in the scene even if
the user turns away from the object. An object can thus serve as
an auditory landmark. With a search function, the system can even
guide the user to a particular item. The system also provides spatial
audio warnings for nearby objects and walls to avoid collisions.
We evaluated the implemented app in a preliminary user study.
The results show that users can find items without visual feedback
using the proposed application. The study also reveals that the range
of local object detection through MobileNet-v2 was insufficient,
which we aim to overcome using more accurate object detection
frameworks in future work (YOLOv5x).

CCS CONCEPTS
• Human-centered computing → Accessibility theory, concepts
and paradigms; Accessibility technologies.
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1 INTRODUCTION
People with visual impairments face major challenges when ex-
ploring unknown spaces or searching for objects, even in their
own homes. Historically, only a few tools for exploring unknown
spaces were available such as a guide dog or a white cane. Only
a low percentage of the blind and visually impaired persons (VIPs)
even utilize these aids (less than 10 % white cane users [38, 39] and
about 2 % guide dog users [12] in the USA). Reasons for this can
be found in the stigma of using a white cane or a guide dog, which
distinguishes VIPs from other people. There are also issues with
adapting to white cane usage, safety concerns [13], and the high
cost for a guide dog and the need to care for it [12].

A solution for the stigma issues are hidden guidance devices, e.g.
vibrotactile belts [35] or smartphone apps that provide navigation
instructions and describe the world around the user based on data
from private or public map services (e.g. Blindsquare [23], NavCog3
[30], Blavigator [9], BlindNavi [5], ASSIST [26]), or localized simul-
taneous localization and mapping (SLAM) approaches (e.g., Fusco et
al. [10]). In recent years, several interesting works emerged in mo-
bile scene recognition, and subsequent auditory scene description
for people with visual impairments [1, 6, 22, 25, 26, 28, 32, 34, 40].
These approaches can be categorized into online and offline/local
concepts. Online approaches take a picture using a smartphone
camera, send this picture to a server for evaluation, and then pro-
vide an auditory description of the scene to the VIP. Using a remote
server for scene recognition has several major disadvantages:

• The latency due to the communication with the server and
the on-server processing.

• When the audio description is received on the smartphone
and played back, the user might already have moved, result-
ing in inaccurate positioning of the 3D audio descriptions.

• For the same reason, detected objects cannot accurately be
placed and tracked in the scene. This means they are lost if
they are not detected in subsequent frames and cannot be
used as static landmarks.

• Possible privacy implications from sending pictures or a
video stream to an external server.

Offline/local approaches do not have these disadvantages but
usually have a lower object recognition accuracy as a trade-off for
recognition speed.

Our main contribution lies in merging concepts from different
existing approaches [1, 8, 16, 22, 26, 28, 32, 34] into one compelling
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Figure 1: Left: the implemented system used in the study with MobileNet v2 as an object detection engine (range 1-1.5 m).
Center: options for setting the auditory field between 0 and 360° and the detection threshold for the underlying neural

network. Right: Preliminary future work version with YOLOv5x [11] (range 2-5 m).

iPhone app, which was validated in a preliminary usability study.
Our app works as follows: First, we detect objects in camera images
usingMobileNet v2 [29] and in a future work version YOLOv5x [11].
These detected objects are placed in an ARKit scene at their re-
spective depth. Placing objects into an AR scene has the major
advantage of being able to use the objects as landmarks, even if the
user turns away from the object or the object is no longer detected
in subsequent frames. Additionally, it enables accurate 3D audio
descriptions at their estimated locations, including their distance.
Our app users can filter out or search for one or multiple specific
object categories using iOS VoiceOver [3]. They may also tune the
detection sensitivity and audible range of existing objects in the
scene. Finally, a sonar-like sonification feature of nearby obstacles
using ARKit’s plane and wall detection helps users avoid running
into walls and other obstacles.

2 RELATEDWORK
Csapó et al. [7] give a good summary of developments up to 2014
of assistive technologies for the blind based on audio and tactile
feedback.

A system consisting of glasses with a mounted camera, an An-
droid phone for choosing desired objects, and a laptop to detect
objects in pictures made by the camera is proposed by Thakoor
et al. [33]. Feedback about object location, detected by a modified
SURF algorithm, is relayed to the user by a 9-level auditory feed-
back method (e.g., left, up, center). They claim that their system

is the first closed-loop system that provides object localization,
recognition, and audio feedback for grabbing desired objects.

In terms of obstacle detection, Poggi et al. [27] propose a mobile
system that detects objects through deep learning to give speech-
based warnings of obstacles to VIPs. Using a tactile 3×3 grid on the
abdomen, Van Erp et al. [36] present a system to indicate obstacle
information around the user, including direction (3 levels), distance
(4 levels), height (3 levels), and type (4 levels). They found that users
had difficulties distinguishing the high amount of tactile patterns
needed to identify the obstacle information. They found detection
rates between 42 to 76 % for direction and height and 12.8 to 47 % for
object distance after training. Van Erp et al. went for a multimodal
pattern presentation approach (tactile and auditory) in their follow-
up experiments [36].

Scene sonification is an exciting research direction, which allows
VIPs to perceive a scene, including certain obstacles and naviga-
tion instructions, via auditory cues (through, e.g., flute or water
drop sounds) [15]. Hu et al. [15] investigated three different scene
sonification approaches (depth image sonification, obstacle sonifi-
cation, and path sonification) in a comparative study. They found
that preference for specific sonification approaches was highly
individual. The sonification of high-level scene information (e.g.,
direction of a pathway) is generally easier to learn than low-level
scene information (e.g., raw depth images).

A wearable assistive device aiming to navigate blind people in
highly crowded urban areas is presented byMocanu et al. [24]. They
use a system consisting of a smartphone camera and ultrasonic
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sensors. It can identify static and highly dynamic objects and warns
the user about possible dangers using acoustic feedback. Li et al.
[21] propose a system using an electronic SmartCane to assist VIPs
with independent indoor travel. The system requires the location
to be prepared by generating a semantic map. The system then
detects dynamic and non-dynamic obstacles and provides the VIP
with an adjusted path that avoids the obstacles on the way to the
destination. Jośe et al. [19] provide a real-time assistance system that
complements the white cane and is usable indoor and outdoor. The
system can detect a path and obstacles within the path’s borders
and help avoid potential dangers. It guides the VIP around the
obstacles while maintaining a walkable path.

Using the head-mounted AR platform Microsoft HoloLens, Eck-
ert et al. [8] scan the user’s surroundings. YOLOv2, a pre-trained
neural network operating on a server back end, then analyzes the
surroundings. The system gives feedback to the user in the form
of directional 3D audio. The system could be extended to use the
HoloLens depth information for obstacle avoidance. With ReCog,
Ahmetovic et al. allow VIPs to train a neural network to detect
their personal items at home and give auditory feedback about their
locations [1].

A recent system similar to our approach isWatchOut by Presti
et al. [28]. They developed an iOS app that uses ARKits’ plane
detection to sonify close objects to VIPs, similar to our sonar ap-
proach. However, Presti et al. did not include the type of object
in the sonification and use it purely for obstacle avoidance. With
iVision, Shen et al. [32] also developed an iOS app to search for
single objects detected through YOLOv3 and sonified at their re-
spective position using ARKit. This approach is very similar to
ours but only allows searching for single objects (similar to our
search function), does not place objects statically into the scene,
and their study highlighted several usability issues with their app.
AIGuide is another very recent system that allows users to search
pre-identified ARKit objects in their home through sonification and
tactile feedback. Unlike our approach, AIGuide can only identify a
small set of pre-identified ARKit ReferenceObjects.

3 CONCEPT AND FIRST IMPLEMENTATION
Our first concept was informed by experiences from related work
[1, 8, 16, 22, 26, 28, 32, 34]. The HoloLens application of Huang [16]
showed that AR could increase the level of comfort and confidence
of VIPs when doing search tasks by reading text present in the envi-
ronment back to them. Additionally, Lin et al. [22] demonstrated an
Android-based smartphone application that provides object detec-
tion, obstacle avoidance, and face detection. Our target population
is VIPs with any degree of visual impairment from slightly impaired
to fully blind. All VIPs can profit from an app helping them perceive
objects and obstacles in the environment.

Initially, we investigated different mobile object detection frame-
works and settled on using MobileNet v2 [29], as it could deliver an
acceptable frame rate and decent recognition performance in our
initial tests. YOLOv4 [4] and YOLOv5 [11] were not yet released.
In terms of AR framework, we settled on using Apple ARKit [2],
as many blind individuals own iPhones due to (initial) advantages
[17] of iOS VoiceOver [3, 18] over Android Talkback [14, 18].

We decided to merge 3D audio descriptions of the local object
detection provided by MobileNet v2 [29] with local AR scene recog-
nition ARKit [2] as shown in Figure 2b, which provides the follow-
ing benefits over existing scene description or scene sonification
approaches:

• Recognized items can be placed in the scene at a certain
depth detected by the AR framework. Thus, it is possible to
relay the distance of an item to the searching user, e.g., by
using different volumes to different object descriptions or
by 3D auditory distance descriptions in which the depth is
described in natural language (“book at 2.5 meters, knife at
1 meter, ...”).

• Recognized items can stay in the scene even if they are no
longer detected in subsequent frames. This has the advantage
that items can serve as landmarks, and users may be able to
create a mental map of their surroundings more easily with
the knowledge of certain items that are on the side, above,
below, or behind them.

• Like other approaches, which detect the depth of obstacles
using a depth camera [15], our approach can also detect
obstacles and their position using ARKits plane detection.
However, the current version of ARKit has some reliability is-
sues, which will likely be fixed in future versions. Additional
accuracy in plane and obstacle detection will be available
through the depth camera present in the iPhone 12 Pro and
future smartphones.

We implemented our concept as an iPhone app (system overview
shown in Figure 3). Our approach includes obstacle detection and
sonification through ARKit’s [2] plane detection, and sonification
through sonar-like sounds as well as 3D audio descriptions of de-
tected objects by MobileNet v2 [29].

Both the sonar and the audio descriptions use a generic head-
related transfer function (g-HRTF) [20] to provide 3D audio, includ-
ing depth cues. While g-HRTFs initially perform worse in local-
ization accuracy compared to personalized-HRTFs. They produce
comparable results after some training and do not require individual
calibration [20].

In terms of app options (see Fig. 1), the user may choose to only
listen to obstacles and objects at a certain angle in front of her or
him by adjusting the auditory field between 0 and 360°. The user
may even fine-tune the neural network’s detection threshold to
either detect more objects with lower accuracy or fewer objects
with more accuracy. Furthermore, we implemented an object filter
to only read selected objects back to the user. We also implemented
an object search function to find individual objects. All of these
options are selectable using iOS VoiceOver [3].

A typical interaction with the system could look as follows: A
VIP is searching for her handbag, which (unknown to her) was
carried to a different place by her cat. 1. She starts the app. 2. She
enters the search function using VoiceOver and selects “handbag”.
3. She starts moving around her home, scanning the environment.
4. Entering her living room, the app detects the handbag laying on
the floor to her right. The app starts vocalizing “handbag” to the
lower right. 5. She repeatedly hears the direction and distance to
the handbag and successfully picks it up.
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Figure 2: Merging ARKit plane detection and object detection by MobileNet v2 [29].
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Figure 3: Implemented app (left) and abstract system overview (right).

4 EXPLORATORY USER STUDY
Using our first prototype, we decided to run an exploratory user
study to gather qualitative feedback from blindfolded students and
VIPs. We already knew from preliminary testing that the MobileNet
v2 [29] object recognition accuracy and range would not be sat-
isfactory. Thus, this study’s focus is not on a search performance
comparison vs. a baseline (e.g., white cane searching) but on quali-
tative feedback and usability of the app instead. We used the think-
aloud method [37] and conducted the study in a lab room with five
possible items as potential search targets (see Figure 4, left).

4.1 Procedure
On arrival, each participant had to fill out or agree to an informed
consent form, which we read back to the blind participant and

recorded his consent on audio. We further collected general par-
ticipant data, including the kind and degree of visual impairment,
through an introductory questionnaire. Subsequently, we intro-
duced the participants to the iPhone app running on an iPhone 11
Pro and let them explore and try the options (shown in Figure 1) via
iOS VoiceOver. In this first experiment phase, they could freely
roam around the room and listen to audio feedback based on their
settings while voicing concerns and feedback about the app to us.

In the second experiment phase, we fit the prototype belt with
the iPhone 11 Pro and the app in the study mode on the partici-
pant’s chest (see Figure 4, center). The settings for the study mode
were detection rate 0.8 and auditory field 180°. These settings were
determined in a pre-experiment by the authors. The participant’s
task was to find five potential targets, one after the other, by walk-
ing around, hearing target positions, and touching the targets. The
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potential targets were a handbag, a teddy bear, a cup, a bottle, and
a keyboard. The item positions were randomized between partic-
ipants and between the two runs that each participant had to do.
Our participants had to do two runs of the course, one with the
app and, as a counterbalanced control condition, one with either
their white cane or a makeshift white cane that we provided to
participants who did not have their own. We measured search times
in both conditions.

4.2 Participants
We invited a total of five participants (students) with normal vision
who were blindfolded for the test (P1-P5) as well as one participant
with visual impairments (P6, fully blind) for the study (all male,
mean age 25 years, SD=5.5 years).

Another two participants with visual impairments (P7, male, 68
years old, fully blind, and P8, male, 70 years old, 30 % residual vi-
sion) explored the app and gave their oral feedback in the first study
phase. We also consider their feedback in this study’s qualitative
results even though they did not participate in the second phase
of the experiment due to time constraints and for safety reasons.
We did not want to risk these two older participants running into
tables or falling as the ARKit’s plane detection [2] did not work
perfectly, so our sonar feedback for obstacles was inaccurate some-
times. Figure 4 shows the younger blind study participant (35 years
old) conducting the study with the smartphone app on the left and
his white cane on the right.

4.3 Results and Discussion
In terms of quantitative search times of our participants in the
second phase of the experiment, searching the five targets with
the white cane took them on average 4m 53s (SD = 1m 3s), and
searching with the app took them 5m 7s (SD = 2m 23s). P6 (blind)
needed 4m 35s searching with his white cane and 2m 56s with the
app, but he did the trials with his white cane first and created a
mental map of the room in his head while doing the first run with
his white cane. Keep in mind that this quantitative data is based on
six participants, of which five were not trained on using a white
cane or navigating blindly. Thus, the quantitative data is merely
informational but cannot lead to firm conclusions.

Figure 5 shows the results of our final questionnaire on our
app’s usability. The results were mostly positive: all participants
(slightly) agreed that they like the app. However, they saw the
app more as a support for a white cane than a replacement. A
reason could be that most participants could not imagine using
the app outdoors. However, indoor navigation is a possible field
of application, as all attendees could (fully) imagine using the app
indoors. The application’s interface was given general approval.
All participants were able to navigate through the app safely. The
feedback to the spatial audio features was very similar: the 3D
audio was received very positively. Only one participant found
the repetitive reading of the objects slightly disturbing, and all
participants saw it as a helpful feature to read the objects. Regarding
the sonar sound, the participants were more critical: Although
nobody was disturbed by the sound, it was only helpful for three
out of six (changing pitch), and four out of six participants did not
feel insecure with the use of the sonar, respectively.

Apart from the general feedback collected by the questionnaire,
we collected the following additional feedback by noting down
vocal participant concerns while interacting with the app in both
phases of the study. With special attention to the feedback from
our blind participants, they noted that the app was an interesting
prototype and that they could imagine using it to search for lost
objects, e.g., in their own home but that the current detection rates
and especially the range were too low, so they would likely still
prefer to search everything by hand. The feedback from P8 was
especially helpful, as he explored the app with his 30 % residual
vision andmade us realize the importance of strong contrasts within
the app’s buttons and detected objects apart from generally large
fonts for VIPs who are not entirely blind.

We improved the app-based mostly on the feedback of our blind
participants by increasing the contrasts of the detected objects, by
applying a dark background, by enlarging the camera view while
keeping the buttons rather large, and by switching from MobileNet
v2 [29] to YOLOv5x [11]. YOLOv5x was released after conducting
the study (see Figure 1, right).

5 LIMITATIONS
Our user study had several significant limitations, already hinted
at earlier. First, blindfolded individuals have different experiences
and abilities, and therefore they are not representative of the target
population of VIPs [31]. Consequently, a future work study should
solely include VIPs as participants. Secondly, a considerable lim-
itation of our prototype in the user study was the relatively low
detection accuracy of MobileNet v2 [29]. Several objects were only
detected if the user was in close proximity of around 80 cm, while
others were already detected at a distance of 1.5 m. Providing more
useful information to the user without forcing him or her having to
move all around the room would require a detection range above
3 m indoors to cover entire rooms (e.g., kitchens). This limitation
can be solved by the recently released YOLOv4 [4], or YOLOv5
[11] frameworks, which significantly increase detection range and
accuracy for everyday household objects to around 2-5 m while
keeping an acceptable framerate of around 10 fps on an iPhone 11
Pro (YOLOv5x). We already have a prototype implementation of
this concept (see Figure 1). However, we could not evaluate it in a
study yet due to the COVID-19 limitations on conducting studies
imposed by our university. Another issue of the implemented proto-
type was that a bug in ARKit was blocking the microphone for voice
input (Siri). This glitch made it impossible to control the app via
voice commands. Voice control was a highly desired feature among
our blind participants and will likely be fixed in future versions of
ARKit.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented the concept of merging local on-device
object detection with an AR framework. Our first prototype imple-
mentation was still rather rough due to the low detection accuracy
and the limited range of MobileNet v2 [29] and somewhat inexact
plane detection of ARKit. Future work will address these issues
by exchanging MobileNet v2 with YOLOv5x [11] and switching
to an iPhone 12 Pro, which contains a depth camera that should
significantly improve plane detection in ARKit. We plan to conduct
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Figure 5: Subjective views of our study participants on the usability of the app.

a more extensive study with this much-improved prototype, which
we already implemented but could not evaluate yet (see Figure 1,
right). We expect it to be precious to VIPs from our preliminary
tests with the improved prototype, as it does not require any addi-
tional hardware beyond an iPhone and headphones. It runs entirely
locally on the users’ phones, protecting their privacy. It allows the
user to simply hear the type, direction, and distance of objects and
obstacles in their surroundings in real-time, without the limitations
caused by an online approach (e.g., variable latency and connectiv-
ity issues). Another exciting feature, which remains to be validated
in a user study, is the possibility to use the detected objects as land-
marks in the scene, possibly even listening to their position when
they are behind the user and no longer recorded on video.
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